목록mnist 분류모델 (1)
David의 개발 이야기!
CNN을 활용한 MNIST 분류 모델 구현
CNN 을 활용하여 MNIST 분류 모델을 구현해보자. 우선, CNN에 대한 개념 정리를 다시 보면, 1. filter(==kernel) 개념 - 실제로 각 필터는, 특정한 (feature)를 인식하기 위한 목적으로 사용된다. - 각 필터는 특징이 반영된 특징 맵(feature map)을 생성한다. - 얕은 층에서는 local feature, 깊은 층에서는 global feature를 인식하는 경향이 있다. 2. Pooling 개념 합성곱 계층의 출력데이터를 입력으로 받아, 출력 데이터의 크기를 줄이거나, 특정 데이터를 강조하는 용도로 사용 stride 가 2인 경우의 예시임. 3. Padding 개념 패딩이 필요한 이유 -> 이미지 데이터의 축소를 막기 위해(해상도를 유지하기 위해) -> Edge pi..
인공지능공부
2023. 8. 15. 17:37