목록seq2seq단점 (1)
David의 개발 이야기!
Attention 매커니즘에 대해 알아보자!
1. 딥러닝 기반의 기계 번역 발전 과정 기계번역 발전과정은 위 표과 같다. GPT와 BERT의 차이는 아래와 같다. GPT : Transformer 의 디코더(Decoder) 아키텍처 활용 BERT : Transformer 의 인코더(Encoder) 아키텍처 활용 2. 기존 Seq2Seq 모델들의 한계점 (1) bottleneck 현상 - seq2seq 는 context vector v에 소스문장의 정보를 압축하는 구조 -> 병목(bottleneck)이 발생하여, 성능하락의 원인이 된다. (2) 디코더가 context vector를 매번 참고하는 문제 -> 그럼에도 여전히 소스문장을 하나의 벡터로 압축해야함. [ 문제 정리 ] => 하나의 context vector 가 소스 문장의 모든 정보를 가지고 ..
자연어처리
2023. 8. 30. 16:49