목록random sample consensus (1)
David의 개발 이야기!
[CV Lecture 10] - Image Alignment
A. Least Squares Suppose we need an affine transformation to align one image to the other one. 위 식을 정리를 하면 아래처럼 표현할 수 있다. 정리된 식을 미분하면, 세타 에 대한 식이 나오는데, 여기 양변에 A 를 곱해주면, A * theta = b 식이 나오게 된다. 따라서, 해당 문제를 푸는것이 문제가 된다. 즉, image alignment 를 위해서, A, B에서 interest point 를 찾고, 이를 이으면서, homography 를 추정한다. homography 행렬은, 한 이미지의 관심점들을 다른 이미지의 관심점으로 변환하는데 사용할 수 있으며, 두 이미지간의 변환을 구현할 수 있다. B. RANSAC : Ran..
컴퓨터비전
2023. 12. 17. 20:33